|本期目录/Table of Contents|

[1]廖昌要,梁先庭*.基于Born-Markov方程的生物分子间纠缠演化计算[J].宁波大学学报(理工版),2020,33(3):86-90.
 LIAO Changyao,LIANG Xianting*.Computation of entanglement evolution between biomolecules based on Born-Markov equation[J].Journal of Ningbo University(Natural Science & Engineering Edition),2020,33(3):86-90.
点击复制

基于Born-Markov方程的生物分子间纠缠演化计算(PDF)
分享到:

《宁波大学学报》(理工版)[ISSN:1001-5132/CN:33-1134/N]

卷:
第33卷
期数:
2020年3期
页码:
86-90
栏目:
出版日期:
2020-05-10

文章信息/Info

Title:
Computation of entanglement evolution between biomolecules based on Born-Markov equation
作者:
廖昌要 梁先庭*
宁波大学 物理科学与技术学院, 浙江 宁波 315211
Author(s):
LIAO Changyao LIANG Xianting*
Faculty of Physical Science and Technology, Ningbo University, Ningbo 315211, China
关键词:
Born-Markov方程 纠缠 发色团对 量子开放系统
Keywords:
Born-Markov equation entanglement chromophore pairs quantum open system
分类号:
O413.1
DOI:
-
文献标志码:
A
摘要:
本文利用Born-Markov方程计算并分析了两个生物分子间的纠缠演化问题. Born-Markov方程摒弃了传统方程中的久期近似, 并且重新计算了环境算符关联函数的傅里叶变换. 计算表明, 与经典的Lindblad方程相比, Born-Markov方程得到的结果更加符合预期. 考虑两个相互耦合的发色团对(一种吸光分子)与一个多模的马尔可夫环境相互作用, 发现相比于不对称的生物分子, 对称的生物分子能够大大增加量子纠缠的持续时间.
Abstract:
In this paper Born-Markov equation is used to calculate and analyze the entanglement evolution between two biological molecules. The Born-Markov equation abandons the secular approximation used in the traditional equation and recalculates the Fourier transform of the environmental operator correlation function. Comparing with the classical Lindblad equation, the results obtained by the Born-Markov equation are more in line with expectations. In this paper, the interaction of two coupled chromophore pairs (an absorptive molecule) with a multimode Markov environment is taken into consideration. Finally, it is found that the symmetric structure of biological molecules can greatly enhance the duration of quantum entanglement as compared with that of the asymmetric biological molecules.

参考文献/References:

[1] van Grondelle R, Novoderezhkin V I. Energy transfer in photosynthesis: experimental insights and quantitative models[J]. Physical Chemistry Chemical Physics, 2006, 8(7):793-807.
[2] Zhang W M, Meier T, Chemyak V, et al. Exciton- migration and three-pulse femtosecond optical spectro- scopies of photosynthetic antenna complexes[J]. Journal of Chemical Physics, 1998, 108(18):7763-7774.
[3] Liang X T. Non-Markov environment helps excitation energy transfer between chromophores of photosynthesis systems[J]. Physical Review E, 2010, 82(5):2889-2898.
[4] Engel G S, Calhoun T R, Read E L, et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems[J]. Nature, 2007, 446(7137): 782- 786.
[5] Lee H, Cheng Y C, Fleming G R. Coherence dynamics in photosynthesis: protein protection of excitonic coherence [J]. Science, 2007, 316(5830):1462-1465.
[6] Schr?dinger E. Discussion of probability relations between separated systems[J]. Mathematical Proceedings of the Philosophical Society, 1935, 31(4):555- 563.
[7] Albert E, Boris P, Rosen N. Can quantum-mechanical description of physical reality be considered complete[J]. Physical Review, 1935, 47(10):696-702.
[8] Bell J S. On the Einstein-Podolski-Rosen paradox[J]. Physics, 1964, 1(1):195.
[9] Nielsen M A, Chuang I L. Quantum computation and quantum information[M]. , : Press, 2000.
[10] Dodd P J, Halliwell J J. Disentanglement and decoherence by open system dynamics[J]. Physical Review A, 2004, 69(5):521-524.
[11] Ghosh S, Rosenbaum T F, Aeppli G. Entangled quantum state of magnetic dipoles[J]. Nature, 2003, 425(6953):48- 51.
[12] ?telmachovi? P, Bu?ek V. Quantum-information approach to the Ising model: Entanglement in chains of qubit[J/OL]. Physical Review A, 2004, 70(3):032313 []. https://doi.org/10.1103/PhysRevA.70.032313.
[13] Hutton A, Bose S. Mediated Entanglement and correlations in a star network of interacting spins[J]. Physical Review A, 2004, 69(4):361-367.
[14] Brixner T, Stenger J, Vaswani H M, et al. Two- dimensional spectroscopy of electronic couplings in photosynthesis[J]. Nature, 2005, 434(7033):625-628.
[15] Herek J L, Wohlleben W, Cogdell R J, et al. Quantum control of energy flow in light harvesting[J]. Nature, 2002, 417 (6888):533-535.
[16] Liang X T. Computable form of the Born-Markov master equation for open multilevel quantum systems[J/OL]. Physical Review A, 2019, 99:022118 []. https://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.022118.
[17] Thorwart M, Eckel J, Reina J H, et al. Enhanced quantum entanglement in the non-Markovian dynamics of biomolecular excitons[J]. Chemical Physics Letters, 2009, 478():234-237.
[18] Breuer H P, Petruccione F. The Theory of Open Quantum System[M]. : Press, 2006.
[19] Mohseni M, Rebentrost P, Lloyd S, et al. Environment- assisted quantum walks in photosynthetic energy transfer [J/OL]. The Journal of Chemical Physics, 2008, 129(17): 174106 []. https://doi.org/10.1063/1.3002335.
[20] Lindblad G. On the generators of quantum dynamical semigroups[J]. Communications in Mathematical Physics, 1976, 48(2):119-130.
[21] Ishizaki A, Tanimura Y. Quantum dynamics of system strongly coupled to low-temperature colored noise bath: Reduced hierarchy equations approach[J]. Journal of the physical society of , 2005, 74(12):3131-3134.
[22] Liang X T. Initial decoherence and disentanglement of open two-qubit systems[J]. Physics Letters A, 2006, 349(/4):98-103.
[23] Wootters W K. Entanglement of formation of an arbitrary state of two qubits[J]. Physics Review Letters, 1998, 80:2245-2248.
[24] Liu Z Q, Liang X T. Non-Markovian and non- perturbative entanglement dynamics of biomolecular excitons[J/OL]. Chinese Physics Letters, 2011, 28(8): 089201 []. http://cpl.iphy.ac.cn/CN/abstract/ abstract44600.shtml.

备注/Memo

备注/Memo:
收稿日期:2019-10-08.宁波大学学报(理工版)网址:http://journallg.nbu.edu.cn/
基金项目:国家自然科学基金(21773131);宁波大学王宽诚幸福基金.
第一作者:廖昌要(1994-),男,浙江温州人,在读硕士研究生,主要研究方向:量子开放系统.E-mail:13884417727@163.com
*通信作者:梁先庭(1965-),男,湖南安化人,教授,主要研究方向:量子耗散动力学理论与应用.E-mail:liangxianting@nbu.edu.cn
更新日期/Last Update: 2020-05-06