|本期目录/Table of Contents|

[1]郭 伟,陈 寅,潘孝胤*.二维反谐振子在恒定垂直外磁场下的逗留时间[J].宁波大学学报(理工版),2020,33(3):81-85.
 GUO Wei,CHEN Yin,PAN Xiaoyin*.The sojourn time of the inverted 2D harmonic oscillators under a constant perpendicular magnetic field[J].Journal of Ningbo University(Natural Science & Engineering Edition),2020,33(3):81-85.
点击复制

二维反谐振子在恒定垂直外磁场下的逗留时间(PDF)
分享到:

《宁波大学学报》(理工版)[ISSN:1001-5132/CN:33-1134/N]

卷:
第33卷
期数:
2020年3期
页码:
81-85
栏目:
出版日期:
2020-05-10

文章信息/Info

Title:
The sojourn time of the inverted 2D harmonic oscillators under a constant perpendicular magnetic field
作者:
郭 伟 陈 寅 潘孝胤*
宁波大学 物理科学与技术学院, 浙江 宁波 315211
Author(s):
GUO Wei CHEN Yin PAN Xiaoyin*
School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
关键词:
逗留时间 反谐振子 路径积分 磁场
Keywords:
sojourn time inverted harmonic oscillator path integral magnetic field
分类号:
O413.1
DOI:
-
文献标志码:
A
摘要:
粒子逗留时间的计算是量子力学基本问题之一. 本文对处于垂直外磁场下的二维反谐振势模型运用费曼路径积分方法, 得到了初始时刻位于原点的高斯波包随时间的演化方程, 然后计算了带电粒子的逗留时间. 根据计算结果讨论了初始高斯波包在不同宽度情况下, 磁场对逗留时间的影响. 结果显示, 逗留时间刚开始随着磁场强度的增加单调增加, 但当磁场强度足够大, 使得拉莫尔频率?c超过谐振子频率?0时, 逗留时间将变成无穷大, 这与三维情况下的逗留时间仍然持续增加的结果有很大不同.
Abstract:
The calculation of sojourn time is a fundamental problem in quantum mechanics. In this paper, we study the magnetic effects on the sojourn time of the two-dimensional (2D) charged inverted harmonic oscillator under a constant perpendicular magnetic field. We obtain the time evolution of a Gaussian wave-packet initially centered at the origin by employing the Feynman path integral approach, followed by acquiring the integral expression for the sojourn time. Consequently, the magnetic effect on the sojourn time for the Gaussian wave-packets with different values of the initial width are discussed. It is shown that the sojourn time works as a function of the strength of the magnetic field increase. However, when the strength of the magnetic field is so large that the Larmor frequency passes over the inverted harmonic oscillator frequency, the sojourn time becomes infinity. This finding is quite different from the 3D case in which it remains an increasing function.

参考文献/References:

[1] Barton G. Quantum mechanics of the inverted oscillator potential[J]. Annals of Physics, 1986, 166(2):322-363.
[2] Baskoutas S, Jannussis A. Quantum tunnelling effect for the inverted Caldirola-Kanai Hamiltonian[J]. Journal of Physics A: Mathematical and General, 1992, 25(23): L1299-L1304.
[3] Baskoutas S, Jannussis A, Mignani R. Quantum tunnelling of a damped and driven, inverted harmonic oscillator[J]. Journal of Physics A: Mathematical and General, 1993, 26(23):7137-7147.
[4] Guo G J, Ren Z Z, Ju G X, et al. Quantum tunneling effect of a time-dependent inverted harmonic oscillator [J/OL]. Journal of Physics A: Mathematical and Theoretical, 2011, 44(18):185301 []. http://dx. doi.org/10.1088/1751-8113/44/18/185301.
[5] Guo G J, Ren Z Z, Ju G X, et al. Quantum tunneling effect of a driven inverted harmonic oscillator[J/OL]. Journal of Physics A: Mathematical and Theoretical, 2011, 44(30):305301 []. http://dx.doi.org/10.1088/ 1751-8113/44/30/305301.
[6] Guo G J, Ren Z Z, Ju G X, et al. The sojourn time of the inverted harmonic oscillator on the noncommutative plane[J/OL]. Journal of Physics A: Mathematical and Theoretical, 2011, 44(42):425301 []. http://dx. doi.org/10.1088/1751-8113/44/42/425301.
[7] Felder G, Frolov A, Kofman L, et al. Cosmology with negative potentials[J/OL]. Physical Review D, 2002, 66(2):023507 []. https://journals.aps.org/prd/ abstract/10.1103/PhysRevD.66.023507.
[8] AbuSalbi N, Kouri D, Baer M, et al. A study of the quantal time delay matrix in collinear reactive scattering [J]. The Journal of Chemical Physics, 1985, 82(10):4500- 4508.
[9] Sargent M, Scully M O, Lamb W E. Laser Physics[M]. : Addison-Wesley, 1974.
[10] Cooper F, Milton K A M, Simmons L M. Quantum roll: A study of the long-time behavior of the finite-element method[J]. Physical Review D, 1985, 32(8):2056-2060.
[11] MacDonald A H. Quantum Hall Effect: A Perspective[M]. : Springer, 1989.
[12] Chakraborty T, Pietilainen P. The Fractional Quantum Hall Effect[M]. : Springer-Verlag, 1988.
[13] Prange R E, Girvin S M. The Quantum Hall Effect[M]. : Springer-Verlag, 1990.
[14] Chakraborty T. Quantum Dots[M]. : Elsevier, 1999.
[15] Jacak L, Harylak P, W?js A. Quantum Dots[M]. : Springer-Verlag, 1998.
[16] Alhassid Y. The statistical theory of quantum dots[J]. Reviews of Modern Physics, 2000, 72:895-986.
[17] Hanson R, Kouwenhoven L P, Petta J R, et al. Spins in few-electron quantum dots[J]. Reviews of Modern Physics, 2007, 79(4):1217-1265.
[18] Fert A. Origin, development, and future of spintronics (Nobel lecture)[J]. Angewandte Chemie International Edition, 2008, 47(32): 5956-5967.
[19] Grünberg P A. Nobel lecture: From spin waves to giant magnetoresistance and beyond[J]. Reviews of Modern Physics, 2008, 80(4):1531-1540.
[20] Feynman R P. Space-time approach to non-relativistic quantum mechanics[J]. Reviews of Modern Physics, 1948, 20(2):367-387.
[21] Feynman R P, Hibbs A R. Quantum Mechanics and Path Integrals[M]. : McGraw-Hill, 1965.
[22] Wang Y J, Guo W, Pan X Y. The sojourn time of the inverted isotropic harmonic oscillators in a tilted magnetic field[J/OL]. Physica Scripta, 2020, 95:045810 []. https://doi.org/10.1088/1402-4896/ab6b41.
[23] 王竹溪, 郭敦仁. 特殊函数概论[M]. 北京: 北京大学出版社, 2010.

备注/Memo

备注/Memo:
收稿日期:2019-08-09.宁波大学学报(理工版)网址:http://journallg.nbu.edu.cn/
基金项目:国家自然科学基金(11375090);宁波大学王宽诚幸福基金.
第一作者:郭伟(1986-),男,安徽六安人,在读硕士研究生,主要研究方向:路径积分计算相关.E-mail:guoweinbu@foxmail.com
*通信作者:潘孝胤(1974-),男,浙江宁海人,研究员,主要研究方向:凝聚态物理.E-mail:panxiaoyin@nbu.edu.cn
更新日期/Last Update: 2020-05-06