|本期目录/Table of Contents|

[1]吴万春,黄金华,魏明明,等.撒哈拉银蚁仿生结构在光伏组件冷却中的应用[J].宁波大学学报(理工版),2020,33(3):74-80.
 WU Wanchun,HUANG Jinhua,WEI Mingming,et al.Applications of Saharan silver ants-inspired structures in photovoltaic modules cooling[J].Journal of Ningbo University(Natural Science & Engineering Edition),2020,33(3):74-80.
点击复制

撒哈拉银蚁仿生结构在光伏组件冷却中的应用(PDF)
分享到:

《宁波大学学报》(理工版)[ISSN:1001-5132/CN:33-1134/N]

卷:
第33卷
期数:
2020年3期
页码:
74-80
栏目:
出版日期:
2020-05-10

文章信息/Info

Title:
Applications of Saharan silver ants-inspired structures in photovoltaic modules cooling
作者:
吴万春1 黄金华2 魏明明1 李 东1 徐 华1 鲁越晖2
1.宁波大学 物理科学与技术学院, 浙江 宁波 315211; 2.中国科学院 宁波材料技术与工程研究所, 浙江 宁波 315201
Author(s):
WU Wanchun1 HUANG Jinhua2 WEI Mingming1 LI Dong1 XU Hua1 LU Yuehui2
1.School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; 2.Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
关键词:
太阳电池 辐射制冷 热辐射 辐射热交换 热管理
Keywords:
solar cells radiative cooling thermal radiation radiative heat transfer thermal management
分类号:
O436
DOI:
-
文献标志码:
A
摘要:
对当前晶硅太阳电池的太阳吸收特性进行了太阳光谱分析, 并在此基础上提出一种基于撒哈拉银蚁仿生结构的热管理方法, 该仿生结构由氧化物-金属-氧化物Oxide-metal-oxide(OMO)和表面具有微纳结构的聚二甲基硅氧烷Polydimethylsiloxane(PDMS)薄膜共同组成, 可通过热辐射进行表面散热, 同时也能显著地反射近红外波段的太阳光, 进一步降低表面温度. 理论计算结果表明, 将该冷却器应用于光伏组件可使电池温度降低约7.2K. 研究结果为光伏组件的热管理提供了一种新方法.
Abstract:
Heating in solar cells has significantly negative effects on the conversion efficiency and reliability, resulting in a shortened lifetime. According to the analysis on the solar spectra in which silicon solar cells work, this paper proposes a thermal management strategy inspired by Saharan silver ants. The biomimetic structure is composed of an oxide-metal-oxide (OMO) and a micro/nano-structured polydimethylsiloxane (PDMS) film. It can radiate heat through thermal radiation while reflecting the near-infrared sunlight to cool the surface temperature. Theoretical calculations reveal that the temperature of solar cells can be reduced by about 7.2K when applying the biomimetic structure to photovoltaic modules, which provides a new method for thermal management of photovoltaic modules.

参考文献/References:

[1] Davis M W, Fanney A H, Dougherty B P. Prediction of building integrated photovoltaic cell temperatures[J]. Journal of Solar Energy Engineering, 2001, 123(3):200- 210.
[2] Jones A D, Underwood C P. A thermal model for photo- voltaic systems[J]. Solar Energy, 2001, 70(4):349-359.
[3] Skoplaki E, Palyvos J A. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations[J]. Solar Energy, 2009, 83(5):614-624.
[4] Safi T S, Munday J N. Improving photovoltaic per- formance through radiative cooling in both terrestrial and extraterrestrial environments[J]. Optics Express, 2015, 23(19):A1120-A1128.
[5] Singh P, Ravindra N M. Temperature dependence of solar cell performance—an analysis[J]. Solar Energy Materials and Solar Cells, 2012, 101:36-45.
[6] Hirst L C, Ekins-Daukes N J. Fundamental losses in solar cells[J]. Progress in Photovoltaics: Research and Appli- cations, 2011, 19(3):286-293.
[7] Zhao D L, Aili A, Zhai Y, et al. Subambient cooling of water: Toward real-world applications of daytime radiative cooling[J]. Joule, 2019, 3(1):111-123.
[8] Zhou Z G, Wang Z, Bermel P. Radiative cooling for low-bandgap photovoltaics under concentrated sunlight[J]. Optics Express, 2019, 27(8):A404-A418.
[9] Yoon H, Joslin D, Law D, et al. Application of infrared reflecting (IRR) coverglass on multijunction III-V solar cells[C]//2006 IEEE 4th World Conference on Photo- voltaic Energy Conference, 2006:1861-1864.
[10] Hou F H, Han C, Isabella O, et al. Inverted pyramidally- textured PDMS antireflective foils for perovskite/silicon tandem solar cells with flat top cell[J]. Nano Energy, 2019, 56:234-240.
[11] Zhao B, Hu M K, Ao X Z, et al. Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module[J]. Solar Energy, 2018, 176:248-255.
[12] Lin S H, Ai L, Zhang J, et al. Silver ants-inspired flexible photonic architectures with improved transparency and heat radiation for photovoltaic devices[EB/OL]. [2019- 09-10]. https://doi.org/10.1016/j.solmat.2019.110135.
[13] Manzoor S, Yu Z J, Ali A, et al. Improved light management in planar silicon and perovskite solar cells using PDMS scattering layer[J]. Solar Energy Materials and Solar Cells, 2017, 173:59-65.
[14] Zhao B, Hu M K, Ao X Z, et al. Radiative cooling: A review of fundamentals, materials, applications, and pro- spects[J]. Applied Energy, 2019, 236:489-513.
[15] Zeyghami M, Goswami D Y, Stefanakos E. A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling [J]. Solar Energy Materials and Solar Cells, 2018, 178: 115-128.
[16] Sun X S, Silverman T J, Zhou Z G, et al. Optics-based approach to thermal management of photovoltaics: Selective-spectral and radiative cooling[J]. IEEE Journal of Photovoltaics, 2017, 7(2):566-574.
[17] Zhu L X, Raman A P, Fan S H. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(40):12282-12287.
[18] Gentle A R, Smith G B. Is enhanced radiative cooling of solar cell modules worth pursuing?[J]. Solar Energy Materials and Solar Cells, 2016, 150:39-42.
[19] Zhao B, Hu M K, Ao X Z, et al. Comprehensive photonic approach for diurnal photovoltaic and nocturnal radiative cooling[J]. Solar Energy Materials and Solar Cells, 2018, 178:266-272.
[20] Li W, Shi Y, Chen K F, et al. A comprehensive photonic approach for solar cell cooling[J]. ACS Photonics, 2017, 4(4):774-782.
[21] Shi N N, Tsai C C, Camino F, et al. Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants[J]. Science, 2015, 349(6245):298- 301.
[22] Lee B, Liu J Z, Sun B, et al. Thermally conductive and electrically insulating EVA composite encapsulant for solar photovoltaic (PV) cell[J]. Express Polymer Letters, 2008, 2(5):357-363.
[23] Armstrong S, Hurley W G. A thermal model for photo- voltaic panels under varying atmospheric conditions[J]. Applied Thermal Engineering, 2010, 30(11/12):1488- 1495.
[24] Lu Y H, Chen Z C, Ai L, et al. A universal route to realize radiative cooling and light management in photovoltaic modules[EB/OL]. [2019-09-10]. https://onlinelibrary.wiley. com/doi/pdf/10.1002/solr.201700084.
[25] Lotz M R, Petersen C R, Markos C, et al. Direct nano- imprinting of moth-eye structures in chalcogenide glass for broadband antireflection in the mid-infrared[J]. Optica, 2018, 5(5):557-563.

备注/Memo

备注/Memo:
收稿日期:2019-11-18.宁波大学学报(理工版)网址:http://journallg.nbu.edu.cn/
基金项目:宁波市自然科学基金(2019A610053).
第一作者:吴万春(1994-),女,山东聊城人,在读硕士研究生,主要研究方向:被动辐射制冷.E-mail:1550111529@qq.com
*通信作者:徐华(1979-),女,江苏无锡人,博士/副教授,主要研究方向:光学.E-mail:xuhua@nbu.edu.cn
更新日期/Last Update: 2020-05-06