|本期目录/Table of Contents|

[1]吴柯柯,沃维丰*.具有奇性系数的半线性椭圆方程大解的存在性[J].宁波大学学报(理工版),2020,33(3):69-73.
 WU Keke,WO Weifeng*.Existence of large solutions for semilinear elliptic equations with singular coefficients[J].Journal of Ningbo University(Natural Science & Engineering Edition),2020,33(3):69-73.
点击复制

具有奇性系数的半线性椭圆方程大解的存在性(PDF)
分享到:

《宁波大学学报》(理工版)[ISSN:1001-5132/CN:33-1134/N]

卷:
第33卷
期数:
2020年3期
页码:
69-73
栏目:
出版日期:
2020-05-10

文章信息/Info

Title:
Existence of large solutions for semilinear elliptic equations with singular coefficients
作者:
吴柯柯 沃维丰*
宁波大学 数学与统计学院, 浙江 宁波 315211
Author(s):
WU Keke WO Weifeng*
School of Mathematics and Statistics, Ningbo University, Ningbo 315211, China
关键词:
半线性椭圆方程 Keller-Osserman条件 边界爆破 存在性
Keywords:
semilinear elliptic equation Keller-Osserman condition boundary blow-up existence
分类号:
O175.29
DOI:
-
文献标志码:
A
摘要:
研究了一类带奇性系数和一般梯度项的半线性椭圆方程大解的存在性. 首先得到解的梯度估计, 然后证明了方程在边界值等于n时解的存在性, 最后利用上下解的方法得到了大解的存在性.
Abstract:
In order to study the existence of large solutions for semilinear elliptic equations with singular coefficients and general gradient terms, we first prove the gradient estimate, and obtain the existence of solutions when the boundary value is equal to n. Finally, the existence of large solution of the studied equation is obtained by using the method of sub-solutions and super-solutions.

参考文献/References:

[1] Keller J B. On solutions of Δu=f(u)[J]. Communications on Pure and Applied Mathematics, 1957, 10(4):503-510.
[2] Osserman R. On the inequality Δu≥f(u)[J]. Pacific Journal of Mathematics, 1957, 7(4):1641-1647.
[3] Dumont S, Dupaigne L, Goubet O, et al. Back to the Keller-Osserman condition for boundary blow-up solutions[J]. Advanced Nonlinear Studies, 2007, 7(2): 271-298.
[4] Bandle C, Giarrusso E. Boundary blow up for semilinear elliptic equations with nonlinear gradient terms[J]. Advances in Differential Equations, 1996, 1(1):133-150.
[5] Zhang Z J. Boundary blow-up elliptic problems with nonlinear gradient terms and singular weights[J]. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2008, 138(6):1403-1424.
[6] Liu S, Xu Y. Boundary blow-up solutions to semilinear elliptic equations with nonlinear gradient terms[J]. Electronic Journal of Differential Equations, 2014(9): 1-20.
[7] Alarcón S, García-Melián J, Quaas A. Keller-Osserman type conditions for some elliptic problems with gradient terms[J]. Journal of Differential Equations, 2012, 252(2): 886-914.
[8] Mohammed A, Porru G. Large solutions for non- divergence structure equations with singular lower order terms[J]. Nonlinear Analysis: Real World Applications, 2017, 35:470-482.
[9] Gilbarg D, Trudinger N S. Elliptic partial differential equations of second order[M]. Berlin: Springer, 1983.
[10] Mohammed A, Porru G. Large solutions to non- divergence structure semilinear elliptic equations with inhomogeneous term[J]. Advances in Nonlinear Analysis, 2017, 8(1):517-532.
[11] Deuel J, Hess P. A criterion for the existence of solutions of non-linear elliptic boundary value problems[J]. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 1976, 74:49-54.
[12] Felmer P L, Quaas A. On the strong maximum principle for quasilinear elliptic equations and systems[J]. Advances in Differential Equations, 2002, 7(1):25-46.

备注/Memo

备注/Memo:
收稿日期:2019-10-16.宁波大学学报(理工版)网址:http://journallg.nbu.edu.cn/
基金项目:国家自然科学基金(11971251);浙江省自然科学基金(LY20A010010,LY20A010011).
第一作者:吴柯柯(1994-),女,河南驻马店人,在读硕士研究生,主要研究方向:偏微分方程.E-mail:3247475709@qq.com
*通信作者:沃维丰(1981-),女,浙江宁波人,博士/副教授,主要研究方向:偏微分方程.E-mail:woweifeng@nbu.edu.cn
更新日期/Last Update: 2020-05-06