|本期目录/Table of Contents|

[1]张 芳,徐培鹏*,徐铁峰.基于混合表面等离子体弯曲波导的紧凑型宽带偏振分束转换器的设计研究[J].宁波大学学报(理工版),2020,33(3):45-49.
 ZHANG Fang,XU Peipeng*,XU Tiefeng.Compact broadband plasmonic-assisted polarization splitter-rotator based on bent directional couplers[J].Journal of Ningbo University(Natural Science & Engineering Edition),2020,33(3):45-49.
点击复制

基于混合表面等离子体弯曲波导的紧凑型宽带偏振分束转换器的设计研究(PDF)
分享到:

《宁波大学学报》(理工版)[ISSN:1001-5132/CN:33-1134/N]

卷:
第33卷
期数:
2020年3期
页码:
45-49
栏目:
出版日期:
2020-05-10

文章信息/Info

Title:
Compact broadband plasmonic-assisted polarization splitter-rotator based on bent directional couplers
作者:
张 芳 徐培鹏* 徐铁峰
宁波大学 信息科学与工程学院, 浙江 宁波 315211
Author(s):
ZHANG Fang XU Peipeng* XU Tiefeng
Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
关键词:
集成光学器件 偏振控制器件 表面等离子体激元 相位匹配
Keywords:
integrated optics device polarization-selective device surface plasmon phase matching
分类号:
TN256
DOI:
-
文献标志码:
A
摘要:
设计了一种宽带的基于混合表面等离子体弯曲波导的偏振分束转换器, 使用有限元法计算硅波导、混合表面等离子体波导的模场分布和有效折射率, 为器件建模仿真分析提供了依据. 使用时域有限差分法优化器件结构, 以获得最佳的性能参数. 由于混合表面等离子体波导的双折射增强, 设计获得的偏振分束转换器具有超小尺寸和宽带的工作特性. 仿真结果表明 在1550nm的中心波长处消光比大于23dB, 插入损耗小于0.8dB; 在80nm的带宽上, 横磁偏振光转换为横电偏振光的偏振转换效率大于95%.
Abstract:
We propose a plasmonic-assisted polarization splitter-rotator (PSR) based on bent directional couplers. The finite element method is used to calculate the mode field distribution and effective refractive index of silicon waveguides, as well as hybrid surface plasmon waveguides, all of which provide an important basis for device modeling and analysis. We simulate light propagation in the proposed device by a three-dimensional finite-difference time-domain method. With the enhanced birefringence resulting from the plasmonic-assisted asymmetry, the present PSR features ultra-compact size and broadband operation. Our simulation results show an extinction ratio greater than 23dB and an insertion loss lower than 0.8dB at the central wavelength of 1550nm. The TM-to-TE polarization conversion efficiency is improved by more than 95% over a bandwidth of 80nm.

参考文献/References:

[1] Soref R. The past, present, and future of silicon photonics [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(6):1678-1687.
[2] Bai B W, Deng Q Z, Zhou Z P. Plasmonic-assisted polarization beam splitter based on bent directional coupling[J]. IEEE Photonics Technology Letters, 2017, 29(7):599-602.
[3] Dai D X, Bowers J E. Novel ultra-short and ultra- broadband polarization beam splitter based on a bent directional coupler[J]. Optics Express, 2011, 19(19): 18614-18620.
[4] Guan X W, Wu H, Shi Y C, et al. Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire[J]. Optics Letters, 2013, 38(16):3005-3008.
[5] Guan H, Ma Y J, Shi R Z, et al. Ultracompact silicon-on- insulator polarization rotator for polarization-diversified circuits[J]. Optics Letters, 2014, 39(16):4703-4706.
[6] Chen L, Doerr C R, Chen Y K. Compact polarization rotator on silicon for polarization-diversified circuits[J]. Optics Letters, 2011, 36(4):469-471.
[7] Aamer M, Gutierrez A M, Brimont A, et al. CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section[J]. IEEE Photonics Technology Letters, 2012, 24(22):2031- 2034.
[8] Ding Y H, Liu L, Peucheret C, et al. Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler[J]. Optics Express, 2012, 20(18): 20021-20027.
[9] Xiong Y L, Xu D X, Schmid J H, et al. Fabrication tolerant and broadband polarization splitter and rotator based on a taper-etched directional coupler[J]. Optics Express, 2014, 22(14):17458-17465.
[10] Xiong Y L, Wangüemert-Pérez J G, Xu D X, et al. Polarization splitter and rotator with subwavelength grating for enhanced fabrication tolerance[J]. Optics Letters, 2014, 39(24):6931-6934.
[11] He Y, Zhang Y, Wang X D, et al. Silicon polarization splitter and rotator using a subwavelength grating based directional coupler[EB/OL]. [2019-10-12]. http://xueshu. baidu.com/usercenter/paper/show?paperid=7bc7ed909fecb12092e4c07e2d2e4d6d&site=xueshu_seDaiDX,Bowers JE.Novelconceptforultracompactpolarizationsplitter-rotator
[12] based on silicon nanowires.
[13] Fei Y H, Zhang L B, Cao T T, et al. Ultracompact polarization splitter-rotator based on an asymmetric directional coupler[J]. Applied Optics, 2012, 51(34): 8257-8261.
[14] Tan K, Huang Y, Lo G Q, et al. Compact highly-efficient polarization splitter and rotator based on 90° bends[J]. Optics Express, 2016, 24(13):14506-14512.
[15] Zhang Y, He Y, Jiang X H, et al. Ultra-compact and highly efficient silicon polarization splitter and rotator[J]. APL Photonics, 2016, 1(9):091304-1-6.
[16] Bai B W, Liu L, Zhou Z P. Ultracompact, high extinction ratio polarization beam splitter-rotator based on hybrid plasmonic-dielectric directional coupling[J]. Optics Letters, 2017, 42(22):4752-4755.
[17] Guan H, Novack A, Streshinsky M, et al. CMOS- compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler[J]. Optics Express, 2014, 22(3):2489-2496.
[18] Dai D X, Wu H. Realization of a compact polarization splitter-rotator on silicon[J]. Optics Letters, 2016, 41(10): 2346-2349.
[19] Xu H N, Shi Y C. Ultra-broadband silicon polarization splitter-rotator based on the multi-mode waveguide[J]. Optics Express, 2017, 25(15):18485-18491.
[20] Liu L, Ding Y H, Yvind K, et al. Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits[J]. Optics Express, 2011, 19(13):12646- 12651.
[21] Wang Y, Ma M L, Yun H, et al. Ultra-compact sub- wavelength grating polarization splitter-rotator for silicon-on-insulator platform[J]. IEEE Photonics Journal, 2016, 8(6):1-9.
[22] Dai D X, He S L. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement[J]. Optics Express, 2009, 17(19):16646- 16653.
[23] Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 1972, 6(12):4370-4379.
[24] Chin M K, Ho S T. Design and modeling of waveguide- coupled single-mode microring resonators[J]. Journal of Lightwave Technology, 1998, 16(8):1433-1446.

备注/Memo

备注/Memo:
收稿日期:2019-12-13.宁波大学学报(理工版)网址:http://journallg.nbu.edu.cn/
基金项目:国家自然科学基金(61875099,61505092);浙江省自然科学基金(LY18F050005);宁波大学王宽诚幸福基金.
第一作者:张芳(1994-),女,山东泰安人,在读硕士研究生,主要研究方向:硅基偏振调控器件.E-mail:zhangfang_0123@163.com
*通信作者:徐培鹏(1985-),男,浙江台州人,副研究员,主要研究方向:集成光子器件.E-mail:xupeipeng@nbu.edu.cn
更新日期/Last Update: 2020-05-06