|本期目录/Table of Contents|

[1]闵文君,李国平*,韩同鹏,等.基于EEMD能量矩和改进量子粒子群神经网络的滚动轴承故障诊断[J].宁波大学学报(理工版),2020,33(3):33-39.
 Min Wenjun,Li Guoping*,Han Tongpeng,et al.Rolling bearing fault diagnosis based on EEMD energy moment and improved quantum particle swarm optimization neural network[J].Journal of Ningbo University(Natural Science & Engineering Edition),2020,33(3):33-39.
点击复制

基于EEMD能量矩和改进量子粒子群神经网络的滚动轴承故障诊断(PDF)
分享到:

《宁波大学学报》(理工版)[ISSN:1001-5132/CN:33-1134/N]

卷:
第33卷
期数:
2020年3期
页码:
33-39
栏目:
出版日期:
2020-05-10

文章信息/Info

Title:
Rolling bearing fault diagnosis based on EEMD energy moment and improved quantum particle swarm optimization neural network
作者:
闵文君1 李国平1* 韩同鹏2 项四通1 赖文锋1
1.宁波大学 机械工程与力学学院, 浙江 宁波 315211; 2.华夏幸福产业新城杭州有限公司, 浙江 杭州 310000
Author(s):
Min Wenjun1 Li Guoping1* Han Tongpeng2 Xiang Sitong1 Lai Wenfeng1
1.Faculty of Mechanical Engineering & Mechanics, , 315211, ; 2.Huaxia Happiness Industry Co., Ltd., 310000,
关键词:
滚动轴承 故障诊断 集合经验模态分解 能量矩 改进量子粒子群
Keywords:
rolling bearing fault diagnosis ensemble empirical mode decomposition energy moment improved quantum particle swarm
分类号:
TH133.3
DOI:
-
文献标志码:
A
摘要:
针对滚动轴承故障振动信号的非线性和周期性冲击特征, 提出一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition, EEMD)能量矩和改进量子粒子群神经网络的特征提取方法. 基于小波去噪对滚动轴承原始信号进行预处理, 对重构的故障信号进行EEMD并得到多个本征模态函数分量. 利用能量矩方法计算出所需分量的能量矩并归一化, 将归一化后的能量特征参数作为量子粒子群BP神经网络的参数输入, 根据加速度传感器信号实现滚动轴承故障诊断. 分别在不同转速(载荷)下采集驱动端轴承的振动信号, 获取200个训练样本和80个测试样本, 并建立故障诊断模型. 基于文中模型对实际滚动轴承数据进行诊断, 实验结果表明, 不同转速(载荷)下测试的80个样本故障诊断准确率达到100%.
Abstract:
In light of the nonlinear and periodic shock characteristics of rolling bearing fault vibration signals, a feature extraction method based on ensemble empirical mode decomposition (EEMD) energy moment and improved quantum particle swarm neural network is proposed. Based on wavelet denoising, the original signal of the rolling bearing is preprocessed, and the reconstructed fault signal is decomposed by EEMD to obtain multiple eigenmode function components. The energy moment of the required component is calculated by the energy moment method and is normalized. The normalized energy characteristic parameter is used as the parameter input of the quantum particle group BP neural network, and the rolling bearing fault diagnosis is accomplished with the acceleration sensor signal. The vibration signals of the drive end bearings are collected at different speeds (loads), 200 training samples and 80 test samples are acquired, and a fault diagnosis model is established. With this model, the actual rolling bearing data is diagnosed for case study. The experimental results show that the accuracy of 80 samples tested under different speeds (loads) may reach 100%.

参考文献/References:

[1] Ben Ali J, Fnaiech N, Saidi L, et al. Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals[J]. Applied Acoustics, 2015, 89:16-27.
[2] 张超, 陈建军, 郭迅. 基于EMD能量熵和支持向量机的齿轮故障诊断方法[J]. 振动与冲击, 2010, 29(10): 216-220.
[3] Song L, Wang H, Chen P. Vibration-based intelligent fault diagnosis for roller bearings in low-speed rotating machinery[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(8):1887-1899.
[4] Yan R, Gao R X, Chen X. Wavelets for fault diagnosis of rotary machines: A review with applications[J]. Signal processing, 2014, 96:1-15.
[5] Han D, Zhao N, Shi P. Gear fault feature extraction and diagnosis method under different load excitation based on EMD, PSO-SVM and fractal box dimension[J]. Journal of Mechanical Science and Technology, 2019, 33(2):487- 494.
[6] Huang N E, Wu M L C, Long S R, et al. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis[J]. Proceedings of the Royal Society of Series A: Mathematical, Physical and Engineering Sciences, 2003, 459(2037):2317-2345.
[7] Yu D, Cheng J, Yang Y. Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings [J]. Mechanical systems and signal processing, 2005, 19(2):259-270.
[8] Yang Y, Yu D, Cheng J. A roller bearing fault diagnosis method based on EMD energy entropy and ANN[J]. Journal of Sound and Vibration, 2006, 294(1/2):269-277.
[9] 曹精明, 邵忍平, 胡文涛. HOC与EMD结合的齿轮损伤检测研究[J]. 仪器仪表学报, 2011, 32(4):729-735.
[10] 胡爱军, 孙敬敬, 向玲. 经验模态分解中的模态混叠问题[J]. 振动. 测试与诊断, 2011, 31(4):429-434.
[11] Wu Z, Huang N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1):1-41.
[12] 张立国, 康乐, 金梅, 等. 一种基于EEMD-SVD和FCM的轴承故障诊断方法[J]. 计量学报, 2016, 37(1): 67-70.
[13] Li H, Liu T, Wu X, et al. Application of EEMD and improved frequency band entropy in bearing fault feature extraction[J]. ISA transactions, 2019, 88:170-185.
[14] 程军圣, 王健, 桂林. 改进的EEMD方法及其在滚动轴承故障诊断中的应用[J]. 振动与冲击, 2018, 37(16): 51-56.
[15] 彭畅, 柏林, 谢小亮. 基于EEMD、度量因子和快速峭度图的滚动轴承故障诊断方法[J]. 振动与冲击, 2012, 31(20):143-146.
[16] 李恒, 张氢, 秦仙蓉, 等. 基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J]. 振动与冲击, 2018, 37(19):124-131.
[17] 于婷婷. 基于BP神经网络的滚动轴承故障诊断方法[D]. 大连: 大连理工大学, 2008.
[18] Nguyen V H, Cheng J S, Yu Y, et al. An architecture of deep learning network based on ensemble empirical mode decomposition in precise identification of bearing vibration signal[J]. Journal of Mechanical Science and Technology, 2019, 33(1):41-50.
[19] Yan X, Jia M. A novel optimized SVM classification algorithm with multi-domain feature and its application to fault diagnosis of rolling bearing[J]. Neurocomputing, 2018, 313:47-64.
[20] of . Seeded fault test data[DS/OL]. []. https://csegroups. case.edu/bearingdatacenter/pages/download-data-file.

备注/Memo

备注/Memo:
收稿日期:2019-12-05.宁波大学学报(理工版)网址:http://journallg.nbu.edu.cn/
基金项目:国家自然科学基金(51705262).
第一作者:闵文君(1995-),男,安徽宣城人,在读硕士研究生,主要研究方向:机械振动控制、信号处理.E-mail:minwenjun51@163.com
*通信作者:李国平(1967-),男,湖北武穴人,教授,主要研究方向:精密加工、机械振动控制.E-mail:liguoping@nbu.edu.cn
更新日期/Last Update: 2020-05-06