|本期目录/Table of Contents|

[1]张 琨,陶 成,刘 留*,等.工业物联网中的频谱占用及噪声特性分析[J].宁波大学学报(理工版),2019,32(1):20-25.
 ZHANG Kun,TAO Cheng,LIU Liu*,et al.Spectrum occupation and noise characteristics of welding workshop in industrial internet of things[J].Journal of Ningbo University(Natural Science & Engineering Edition),2019,32(1):20-25.
点击复制

工业物联网中的频谱占用及噪声特性分析(PDF)
分享到:

《宁波大学学报》(理工版)[ISSN:1001-5132/CN:33-1134/N]

卷:
第32卷
期数:
2019年1期
页码:
20-25
栏目:
出版日期:
2019-01-10

文章信息/Info

Title:
Spectrum occupation and noise characteristics of welding workshop in industrial internet of things
作者:
张 琨1 陶 成1 刘 留12* 袁 泽1 张建华2
1.北京交通大学 电子信息工程学院, 北京 100044; 2.北京邮电大学 泛网无线通信教育部重点实验室, 北京 100876
Author(s):
ZHANG Kun1 TAO Cheng1 LIU Liu12* YUAN Ze1 ZHANG Jian-hua2
1.School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China; 2.Key Laboratory of Universal Wireless Communication of Ministry of Education of China, Beijing University of Posts and Telecommunications, Beijing 100876, China
关键词:
工业物联网 5G 频谱占用 噪声特性
Keywords:
internet of things 5G spectrum occupation noise characteristics
分类号:
TN92
DOI:
-
文献标志码:
A
摘要:
工业物联网(Industrial Internet of Things, IIoT)作为5G低功耗大连接物联网的主要场景, 其电磁环境错综复杂. 复杂的电磁环境会对IIoT通信产生一定的干扰, IIoT信道电磁干扰的主要来源是工厂机械设备工作时产生的电磁辐射. 真实准确的频谱占用及噪声特性分析是保证IIoT信息可靠传输的前提. 对某汽车厂焊接车间300MHz~6.5GHz的频谱占用情况进行研究, 结果显示除了已知的电信运营商信号, 车间内主要分布着300MHz~2GHz频段的窄带信号和470~800 MHz频段的宽带信号. 通过办公区与焊接车间测量结果以及相关文献结果的对比, 认为窄带信号来源于工厂的金属焊接和加工; 宽带信号是当地的无线广播电视信号.
Abstract:
Industrial Internet of Things (IIoT) is applied in the main areas of 5G massive machine type communication, where the electromagnetic environment is very complex. This electromagnetic environment generates certain interferences to IIoT communications. The main source of the electromagnetic interference in IIoT channels is the electromagnetic radiation generated by the running machines and equipment alike. Knowing the realistic and accurate spectrum occupation and noise characteristics is the precondition to ensure the reliability of IIoT information transmission. In this paper, the measurements for the spectrum occupancy and noise distribution from 300MHz to 6.5GHz in the welding workshop of an automobile factory are taken. The sampled results show that, except for the signals from the telecommunication operator, narrowband signals and broadband signals are generated in this environment. Narrowband signals are mainly distributed at the frequency band from 300MHz to 2GHz; while broadband signals range from 470 to 800MHz. Comparison of measurement results between office area and welding workshop, and the comparison of the related literature and results suggest that the narrowband signals are generated by the metal welding and metal processing in the factory, and the broadband signals are resulted from the local radio and TV signals.

参考文献/References:

[1] 张长青. 基于5G环境下的工业互联网应用探讨[J]. 电信网技术, 2017(1):29-34.
[2] 李士宁, 罗国佳. 工业物联网技术及应用概述[J]. 电信网技术, 2014(3):26-31.
[3] Low K S, Win W N N, Meng J E. Wireless Sensor Networks for Industrial Environments[C]. International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, 2005:271-276.
[4] 张晓冬, 崔晓燕, 闻映红. 焊弧的电磁辐射研究[J]. 电子测量与仪器学报, 2002, 16(4):50-54.
[5] 于鹏飞, 郭从良, 崔恒荣. 电弧电火花的电磁辐射检测[J]. 仪表技术, 2007(9):55-56; 59.
[6] Sanchez M G, Cuinas I, Alejos A V. Interference and impairments in radio communication systems due to industrial shot noise[C]. IEEE International Symposium on Industrial Electronics, 2007:1849-1854.
[7] 张连迎, 王聚杰, 弓勇义. 典型工业区无线电噪声测量与分析[J]. 电子测量技术, 2014, 37(5):85-88.
[8] Stenumgaard P, Chilo J, Ferrer-Coll P, et al. Challenges and conditions for wireless machine-to-machine communications in industrial environments[J]. IEEE Communications Magazine, 2013, 51(6):187-192.
[9] Cheffena M. Propagation channel characteristics of industrial wireless sensor networks [wireless corner][J]. IEEE Antennas & Propagation Magazine, 2016, 58(1):66-73.
[10] Coll J F, Chilo J, Slimane B. Radio frequency electromagnetic characterization in factory infrastructures[J]. IEEE Transactions on Electromagnetic Compatibility, 2012, 54(3):708-711.
[11] Myers H A. Industrial equipment spectrum signatures[J]. IEEE Transactions on Radio Frequency Interference, 2009, 5(1):30-42.
[12] Skomal E N. Comparative radio noise levels of transmission lines, automotive traffic, and RF stabilized arc welders[J]. IEEE Transactions on Electromagnetic Compatibility, 1967, 9(2):73-77.
[13] 英联微波. 对数周期性天线参数[Z/OL]. [2017-11-01]. http://www.ainfoinc.com/cn/p_ant_l.asp.
[14] 张建华, 卢炀, 徐鼎, 等. 基于信道测量进行噪底和信号分量门限估计方法及其装置: 101426212[P]. 2009-05-06.
[15] 王恩济, 常培斗, 高黎明. 对火花放电时电磁辐射的探讨[J]. 电加工与模具, 1983(2):45-52.
[16] Remley C A, Koepke G, Grosvenor C, et al. NIST tests of the wireless environment in automobile manufacturing facilities[R/OL]. [2017-11-01]. https://ws680.nist.gov/publication/get_pdf.cfm?pub_id=33166.
[17] 王庆斌. 电磁干扰与电磁兼容技术[M]. 北京: 机械工业出版社, 2000.
[18] 郑军奇. EMC(电磁兼容)设计与测试案例分析[M]. 北京: 电子工业出版社, 2006.
[19] 中华人民共和国国家新闻出版广电总局. 经批准可以使用的无线广播电视发射频率/频道表[EB/OL]. [2017-11-01]. http://211.146.6.56/plpd.aspx.
[20] Avateq. DTMB RF layer monitering receiver[Z/OL]. [2017-11-01]. http://www.avateq.com/content/47/DTMB- Monitoring-Receiver.

备注/Memo

备注/Memo:
收稿日期: 2018-06-26. 宁波大学学报(理工版)网址: http://journallg.nbu.edu.cn/基金项目: 北京邮电大学泛网无线通信教育部重点实验室开放课题(KFKT-2018105); 国家自然科学基金(61471027); 北京市科技新星计划(Z161100004916068).第一作者: 张琨(1993-), 男, 辽宁庄河人, 在读硕士研究生, 主要研究方向: 无线信道测量建模、信号处理. E-mail: zhangkun16@bjtu.edu.cn*通信作者: 刘留(1981-), 男, 云南昆明人, 博导/教授, 主要研究方向: 无线信道测量与建模、信号处理等. .E-mail: liuliu@bjtu.edu.cn
更新日期/Last Update: 2019-01-02